

Weems Creek Watershed Restoration Plan Retrofitting

September 23, 2004

Scope

- Review existing studies and monitoring data
- Delineate subwatersheds
- Stream Assessment
- Stormwater retrofit inventory
- Priorities and subwatershed management plans

Table 2. Impervious Cover Estimation for Weems Creek Catchments

Catchments	Area	Impervious	ICM Category	Flow Status			
Catcinnents	(acres)	Cover %	icivi category	riow Status			
City 1	13.01	13.9	Impacted	Intermittent			
City 2	19.91	15.0	Impacted	Intermittent			
City 3	9.39	17.2	Impacted	Piped to tidal			
City 4	28.01	52.7	Non-supporting	Piped to tidal			
City 5	19.06	27.9	Non-supporting	Perennial			
City 6	72.26	23.3	Impacted	Piped to perennial stream			
City 7	123.82	25.2	Non-supporting	Piped to perennial stream			
City 8	163.95	45.1	Non-supporting	Piped to perennial stream			
AA1	77.4	19.2	Impacted	Intermittent			
AA2	177.78	20.4	Impacted	Intermittent			
AA3	95.31	19.9	Impacted	Intermittent			
AA4	256.11	26.6	Non-supporting	Piped to perennial stream			
AA5	247.23	44.4	Non-supporting	Piped to perennial stream			
Direct	127.76	14.0	lmnaatad				
Drainage	137.76	14.0	Impacted	Both piped and intermittent			
	,			20/			

Watershed Impervious Cover = 28.9%

Cross Section Stations (ft) - Looking Downstream

Retrofitting Goals

Catchment condition	Goals
Directly piped to tidal	- water quality improvement
Outlet to natural channel	- volume control – infiltration and channel protection
Outlet to intermittent channel	- water quality and assess channels for erosion potential

Example Projects and Concepts

Seattle Public Utilities (Sea Streets), 2004

Section Not to Scale

18. Additional Notes and/or Sketch Information:

Possible		Benefit Points						
Retrofits	Description	\$/pd/10yr	Cost	CPv	WQv	Feasibility	Education	Total
City 8-5	N of West St. fail restor	1	5	5	5	3	4	22
City 6-3	Porter Drive outfall	1	5	5	5	3	3	21
City 6-1	Cedar Park & Naval Lot	7	3	3	5	4	5	20
City 8-6	Existing City Wet Pond		5	5	2	4	4	20
City 8-8	DS of 8-5 below 2nd outfall	1	5	5	5	3	2	20
City 4-1.1	Within Navy lot	6	3		5	4	5	17
City 4-1.2	Within Navy lot	6	3		5	4	5	17
City 4-1.3	Within Navy lot	6	3		5	4	5	17
City 4-2	Edge of Navy lot/Court parking	6	3		5	4	5	17
City 3-1	Tucker St. Cul du sac	6	3		5	3	5	16
City 3-2	West Annap Elem	9	2		5	4	5	16
City 4-3	East Edge Naval lot/Taylor	10	1		5	4	5	15
AA5-1	Linear Dry Pond near Sheraton	1	2	5	*	4	4	15
City 3B-1	End of Annap. St.	6	3		5	3	3	14
AA3-1	Existing Dry Pond in AA	1	5		2	3	4	14
City 6-2	Cdr Park/Goodrich Rd Townhouses	8	2	2	3	3	3	13
AA4-1	Existing Dry Pond 2 in AA	1	5		2	2	4	13
City 5-1	Corner of Schley on pumping station	3	4		3	2	3	12
City 3A-1	Aparts next to Rowe	Low feasibility	2		4	2	2	10
City 8-1	Capital A adj to build	Existing	3		2	3	2	10
City 8-2	Capital B Comm retro	infiltration	3		2	3	2	10
City 8-3	Capital C Comm retro	performance	3		2	3	2	10
City 8-4	Capital D clogged infilt	uncertain	3		2	3	2	10
AA5-2	Instream CPv detention	Flooding concern		5		1		6
City 8-7	Existing SHA Pond	Needs maintenance						
-	* Shaded retrofits are recommended	for pursuit						

Small Scale Retrofits

Weems Creek Conservancy www.weemscreek.org

Steps to constructing a rain garden:

- •Measure the area of roof that uses your downspout.
 - •Measure only the footprint of your house; don't calculate the rise of your roof. Remember, the same amount of rain falls on your roof regardless of the roof's pitch.
 - •Often a gutter will have downspouts at two ends. In this case, assume half the water will go to each downspout.

Load Reduction Estimates

Calculated using the WTM (Caraco, 2002)

 Parameters modeled included TN, TP, TSS and Fecal Coliform

 Modeled our watershed plan recommendations based on field and watershed assessment

Projected Load Reduction

•Overall nitrogen loads could be reduced close to 15%

Projected Load Reduction

•TSS loads could be reduced by 1/3

Findings

- Greater amount of watershed treatment possible with addition of LID practices
- There were a number of sites where traditional retrofit concepts were the best alternative constrained on-site location, uninterested property owner or could improve existing practice
- Importance of public education programs for nitrogen management in a watershed with a lot of residential and commercial land
- Importance of channel protection in combination with stream restoration